

SSC431 Precision Programmable Reference

\rm Description

The SSC431 are three-terminal adjustable shunt regulators with guaranteed thermal stability over a full operation range. It features sharp turn-on characteristics, low temperature coefficient and low output impedance, which make it ideal substitutes for Zener diodes in applications such as switching power supply, charger and other adjustable regulators.

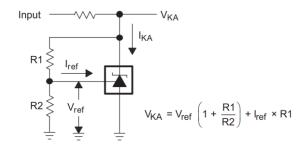
The output voltage of SSC431 can be set to any value between Vref (2.5V) and the corresponding maximum cathode voltage (36V).

The SSC431 precision reference is offered in two voltage tolerance: 0.5% and 1.0%.

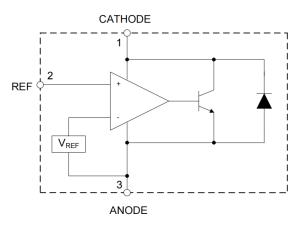
This IC are available in SOT-23 package.

- **4** Applications
- > Charger
- Voltage Adapter
- Switching Power Supply
- ➢ Graphic Card
- Precision Voltage Reference

Device Information



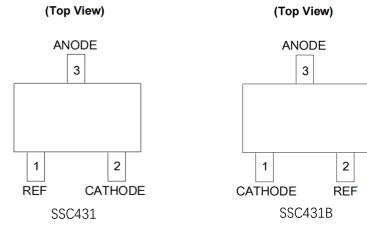
Top view Marking (Y: year/W: week)


Features

- Adjustable output voltage: 2.5V to 36 V
- ➢ Wide Operating Range of −40°C to 125°C
- Low Equivalent Full-range Temperature Coefficient with 50PPM/°C Typical
- Low Output Noise
- Low Dynamic Output Resistance: 0.2Ω
 Typical
- Sink-current capability: 1 mA to 100 mA

4 Typical Application

Functional Block Diagram



4 Ordering Information

Marking	Product	Package	Tape and Reel	Accuracy range		
431 YW 431B YW	SSC431-F	SOT23	2000 mag			
	SSC431-K	50125	3000 pcs	F: 2.500±1.0%		
	SSC431B-F	SOT22D	2000 mag	K: 2.500±0.5%		
	SSC431B-K	SOT23B	3000 pcs			

Pin Configuration

Pin configuration

SSC431	SSC431B	Symbol	Description
1	2	REF	Threshold relative to common anode
2	1	CATHODE	Shunt Current/Voltage input
3	3	ANODE	Common pin, normally connected to ground

4 Absolute Maximum Ratings⁽¹⁾

(Unless otherwise specified, all voltage are with respect to GND, TA=25°C)

Symbol	Parameter	Rating	Unit
V _{KA}	Cathode Voltage ⁽²⁾	40	V
I _{KA}	Cathode Current Range (Continuous)	-100 to 150	mA
I _{REF}	Reference Input Current Range	10	mA
P _D	Power Dissipation ⁽³⁾	370	mW
TJ	Junction Temperature	+150	°C
T_{opr}	Operating Temperature	-40 to +125	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C

(1). Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

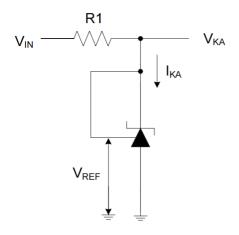
(2) All voltage values are with respect to ANODE, unless otherwise noted.

(3) Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

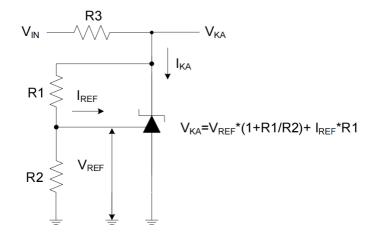
4 Recommend Operating Conditions

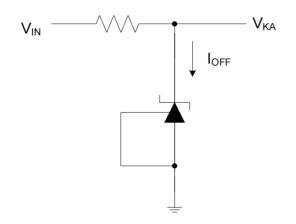
(Ta=25°C, unless otherwise noted)

Symbol	Parameter	Min	Max	Unit
V _{KA}	Cathode Voltage	VREF	36	V
I _{KA}	Cathode Current	1.0	100	mA

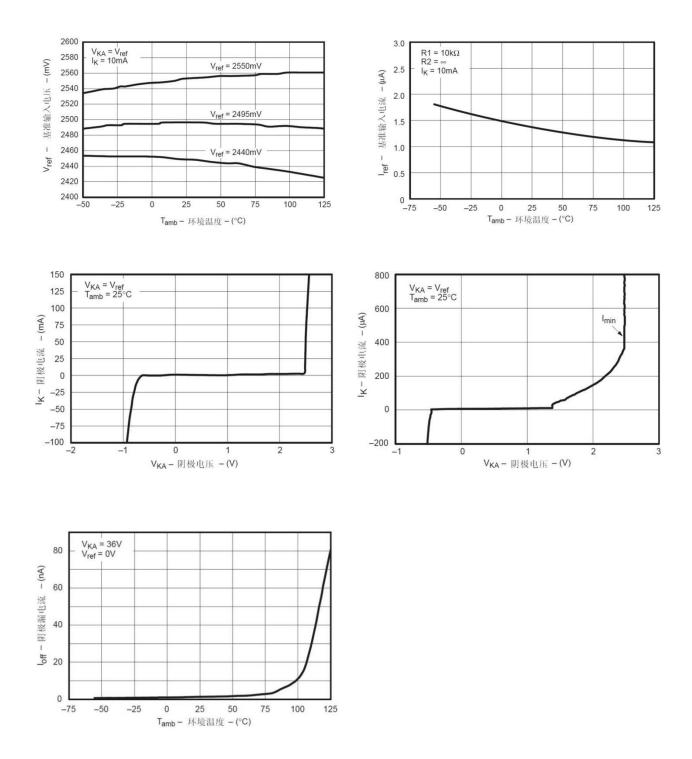

4 Electrical Characteristics

Symbol	Parameter		Test Circuit	Conditions		Min	Тур	Max	Unit
V _{REF}	Reference 0.5% 4 Voltage 1.0%		4	V _{KA} =V _{REF} ,I _{KA} =10mA		2.487 2.475	2.500 2.500	2.512 2.525	v
ΔV_{REF}	Voltage1.076Deviation of ReferenceVoltage Over FullTemperature Range		4	$V_{KA}=V_{REF}$, $I_{KA}=10mA$ TA= -40 to +125°C		-	8	17	mV
ΔV_{REF}	$\frac{\Delta V_{\text{REF}}}{\Delta V_{\text{KA}}} \begin{array}{c} \text{Ratio of Change in} \\ \text{reference} \\ \text{Voltage to the Change in} \\ \hline 5 \\ \hline \\ \text{MA} \\ \hline \\ \hline \\ \Delta \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$		5	I _{KA} =10	$\begin{array}{c} \bigtriangleup \ V_{KA} = 10V \\ \text{to} \ V_{REF} \end{array}$	_	-1.0	-2.7	mV/
ΔV_{KA}				_	-0.5	-2.0	V		
I _{REF}	Reference Current		5	$I_{KA}=10mA, R1=10K, R2=\infty$		_	2.0	4.0	μA
∆I _{REF}	Deviation of Reference Current Over Full Temperature Range		5	$I_{KA} = 10mA$ R2= ∞ , T _A = -40 to	A, R1=10K, p+125°C	_	0.4	1.2	μΑ
I _{KA} (Min)	Minimum Cathode Current for Regulation		4	$V_{KA} = V_R$	EF	-	0.4	1.0	mA
I _{KA} (Off)	Off-state Cathode Current		6	$V_{KA} = 36$	$V, V_{REF} = 0$	_	0.05	1.0	μA
Z _{KA}	Dynamic Impedance 4 mA		$V_{KA} = V_{RE}$ mA, f ≤ 1.0	F,I _{KA} =1to100 KHz	_	0.2	0.5	Ω	
θ _{JA}	Thermal Resistance		_	SOT-23		_	337	_	°C /W


Over recommended operating conditions, $TA = 25^{\circ}C$ (unless otherwise noted)

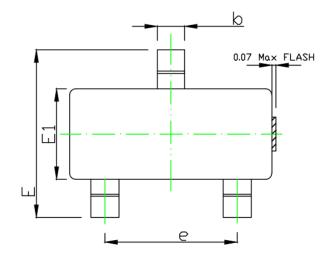

4 Typical Applications Circuit

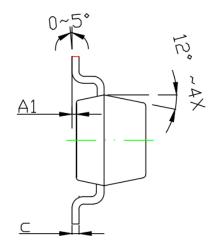
Test Circuit 4 for $V_{KA}=V_{REF}$

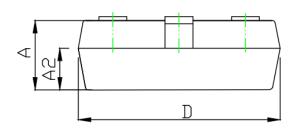

Test Circuit 5 for V_{KA}>V_{REF}

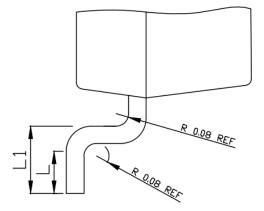
Test Circuit 6 for IOFF

4 Typical characteristic

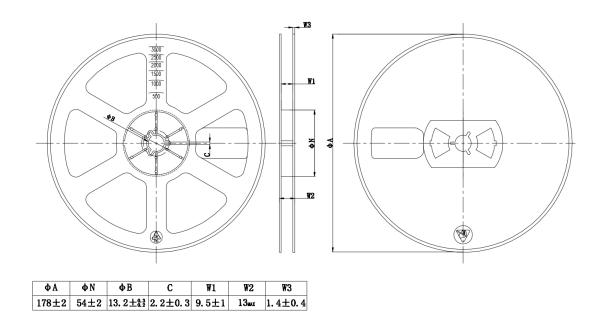



www.sscsemi.com

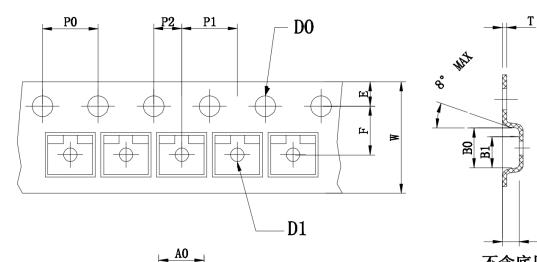



SSC431/SSC431B

Package Outline

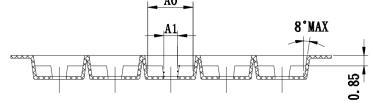


www.sscsemi.com



SYMBOL	MILLIMETER					
21MBOL	MIN	NOM	MAX			
А	0.95	1.00	1.05			
A1	0.01	0.05	0.10			
b	0.35	0.40	0.45			
с	0.11 BSC					
D	2.80	2.90	3.00			
Е	2.30	2.40	2.50			
E1	1.20	1.30	1.40			
е	1.90 BSC					
L	0.20	-	_			
L1	0.30	0.40	0.50			
A2	0.60 REF					

Tape and Reel



KO

Symbol	AO	A1	BO	B1	KO	D0	D1	P0
Spec	3.15±0.10	1.15±0.10	2.80±0.10	2.15±0.10	1.30±0.10	1.55±0.10	1.10±0.10	4.00±0.10
Symbol	P1	W	Е	P2	Т	10*P0	F	
Spec	4.00±0.10	8.00±0.10	1.75±0.10	2.00±0.10	0.21±0.02	40.00±0.10	3.50±0.10	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.