

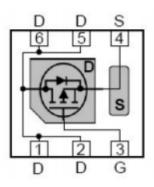
SSC8029GN2

P-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSON Typ.	ID
201/	. 10\/	18mR@-4V5	7 6 4
-20V	±12V	21mR@-2V5	-7.5A

Description


This device is produced with high cell density DMOS trench technology, uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device particularly suits low voltage applications such as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package.

Applications

- Load Switch
- Portable Devices
- DCDC conversion
- Charging
- Driver for Relay

Pin configuration

Top view

Bottom View

Marking

> Ordering Information

Device	Package	Shipping	
SSC8029GN2	DFN2x2	3000/Reel	

Absolute Maximum Ratings(T_A=25C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Vdss	Drain-to-Source Voltage	-20	V
V _{GSS}	Gate-to-Source Voltage	±12	V
ID	Continuous Drain Current ^a	-7.5	А
Ідм	Pulsed Drain Current ^b	-24	А
PD	Power Dissipation ^c	3	W
Pdsm	Power Dissipation ^a	1.4	W
TJ	Operation junction temperature	-55 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

> Thermal Resistance Ratings(TA=25C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
Reja	Junction- to- Ambient Thermal Resistance ^a		99	
Rejc	Junction- to- Case Thermal Resistance		45	°C/W

Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2 oz.copper,in a still air environment with $T_A=25^{\circ}C$. The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}=150_{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

Electronics Characteristics(T_A=25C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit	
V(br)dss	Drain-Source Breakdown Voltage	VGS=0V,ID=-250uA	-20			V	
VGS (th)	Gate Threshold Voltage	VDS=VGS,ID=-250uA	-0.45	-0.55	-0.8	V	
R _{DS(on)}	Drain-Source	VGS=-4.5V , ID=-5.5A		18	26	mR	
NDS(on)	On-Resistance	VGS=-2.5V , ID=-2.5A		21	30		
ldss	Zero Gate Voltage Drain Current	VDS=-20V,VGS=0V			- 1	uĄ	
less	Gate-Source leak	VGS=± 12V , VDS=0V			±100	nĄ	
GFS	Transconductance	VDS=-5V , ID=-5.5A		23		S	
Vsd	Forward Voltage	VGS=0V , IS=- 1A		-0.75	- 1.5	V	
Ciss	Input Capacitance			1970			
Coss	Output Capacitance	VDS=- 10V , VGS=0V, f=1MHz		205		PF	
Crss	Reverse Transfer Capacitance			195			
T _{D(ON)}	Turn-on delay time			16			
Tr	Rise time	VGS=-4.5V,		14			
T _{D(OFF)}	Turn-off delay time	VDS=- 10V, RL=6R, RG=6R,ID=-6.5A		78		ns	
Tf	Fall time			66			

50

40

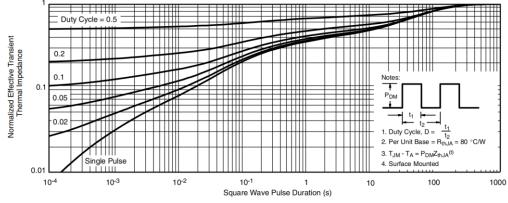
I_D - Drain Current (A)

I_D - Drain Current (A) 30 6 20 V_{GS} = 2 V -4 = 25 TC 10 2 V_{GS} = 1.5 V T_C = 125 °C 55 °C 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 V_{DS} - Drain-to-Source Voltage (V) V_{GS} - Gate-to-Source Voltage (V) **Output Characteristics Transfer Characteristics** 0.06 0.08 0.07 0.05 V_{GS} = 1.8 V 125 7.6 A; T_J = $|_{D}$ (U) R_{DS(on)} - On-Resistance (Ω) 0.06 2.5 A; T_J = 125 C 0.04 R DS(on) - On-Resistance 0.05 0.03 0.04 25 A V_{GS} = 2.5 V 0.03 0.02 7.6/ T₁ 0.02 0.01 0.01 V_{GS} = 4.5 V 0.00 0.00 0 10 20 30 40 50 V_{GS} - Gate-to-Source Voltage (V) I_D - Drain Current (A) **On-Resistance vs. Gate-to-Source Voltage On-Resistance vs. Drain Current** 1.6 100 I_D = 7.6 Å Limited by Rp R_{DS(on)} - On-Resistance (Normalized) 80 01 7 7 8 $V_{GS} = 4.5 V$ 10 ID - Drain Current (A) 1 ms V_{GS} = 2.5 V 10 ms 100 m T_A = 25 °C Single Pulse Si 1 s, 10 0.1 DC **BVDSS L** 0.6 0.01 - 50 - 25 0 25 50 75 100 125 150 0.1 10 1 $\label{eq:VDS} \begin{array}{l} V_{DS} \mbox{-} \mbox{Drain-to-Source Voltage (V)} \\ {}^{\bullet} V_{GS} \mbox{>} \mbox{minimum V}_{GS} \mbox{ at which } R_{DS(on)} \mbox{ is specified} \end{array}$ T_J - Junction Temperature (°C) **On-Resistance vs. Junction Temperature** Safe Operating Area, Junction-to-Ambient

Typical Characteristics(T_A=25^C unless otherwise noted) ۶

= 5 V thru 3 V

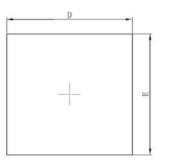
 $V_{GS} = 2.5 V$

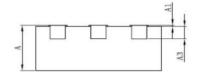

VGS

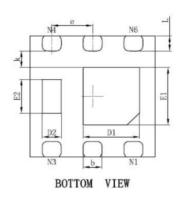
10

8

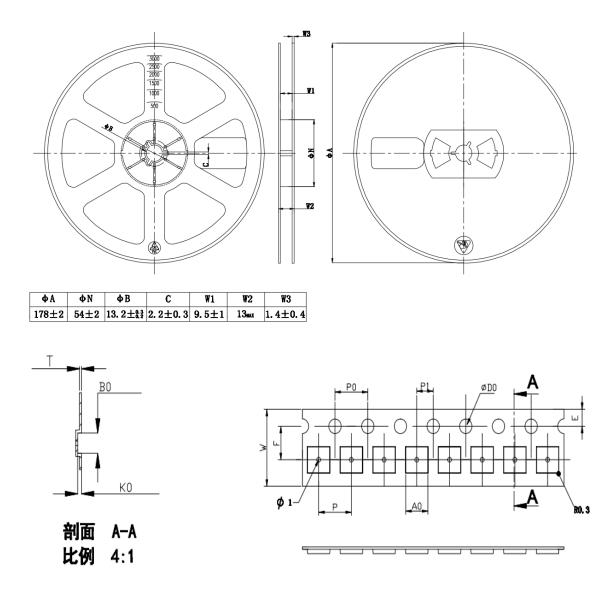
100






Package Information

SIDE VIEW



DFN2x2-6L

Symbol	Dimensions In Millimeters				
Symbol	Min.	Max.			
А	0.700	0.800			
A1	0.000	0.050			
A3	0.203	REF.			
D	1.924	2.076			
E	1.924	2.076			
D1	0.800	1.000			
E1	0.850	1.050			
D2	0.200	0.400			
E2	0.460	0.660			
k	0.200	DMIN.			
b	0.250	0.350			
е	0.650TYP.				
L	0.174	0.326			

Tape and Reel

AO	BO	KO	Ρ	PO	E	F	DO	P1	Т	W
2.25±0.05	2.25±0.05	1.15 ±0.05	4.00 ± 0.05	4.00 ± 0.05	1.75 ±0.10	3.50±0.05	1.55 ±0.10	2.00 ± 0.05	0.25±0.05	7.95±0.05

说明:

- 1.10个棘孔的累积误差不超过±0.2mm;
- 2. A0与B0的尺寸是距型腔内底部0.3mm处测得;
- 3. KO的尺寸是型腔内底部到料带上表面的距离;
- 4. 料带厚度0.25±0.5mm;
- 5. 材料:黑色PS.

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.