

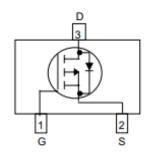
SSC8161GS6A

P-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSON Typ.	ID	
601/	+20V	90mΩ@-10V	-4A	
-60V	±20V	100mΩ@-4V5	-4A	

Description


This P-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits and low in-line power loss are needed in a very small outline surface mount package.

Applications

- TFT panel power switch
- High side DC/DC Converter
- High side driver for brushless DC motor
- Portable DVD, DPF

Pin configuration

Top view

SOT23-3L

Marking

Ordering Information

Device	Package	Shipping	
SSC8161GS6A	SOT23-3L	3000/Reel	

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V _{DSS}	Drain-to-Source Voltage		-60	V	
V _{GSS}	Gate-to-Source Vol	tage	±20	V	
	Continuous Drain Current	TC=25°C	-4	А	
l _D	Continuous Drain Current	TC=100°C	-3		
1	O-ation - David Orange 13	TA=25°C	-2.8	^	
I _{DSM}	Continuous Drain Current ^a	TA=70°C	-2	Α	
I _{DM}	Pulsed Drain Current ^b		-16	Α	
D	Dower Discipation C	TC=25°C	5	W	
P_D	Power Dissipation ^c	TC=100°C	2	W	
В	B	TA=25°C	1.25	W	
P_{DSM}	Power Dissipation ^a TA=70°C		0.8	W	
T _J T _{STG}	Storage and Operation junction temperature		-55 to 150	°C	

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance ^a		100	°C /\
R _{eJC}	Junction-to-Case Thermal Resistance		24	°C/W

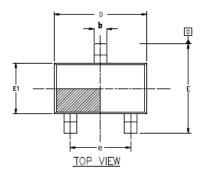
Note:

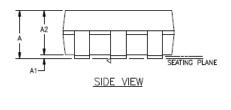
- a. The value of RθJA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

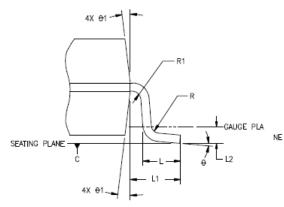


➤ Electronics Characteristics(T_A=25 °C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=-250uA -60				V
V _{GS} (th)	Gate Threshold Voltage	VDS=VGS,ID=-250uA	uA -1.0		-2.5	\
	Drain-Source On-	VGS=-10V,ID=-1A		90	105	mΩ
R _{DS(on)}	Resistance	VGS=-4.5V,ID=-0.5A		100	120	11122
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-60V,VGS=0V			-1	uA
I _{GSS}	Gate-Source leak current	VGS=±20V,VDS=0V			±100	nA
V _{SD}	Forward Voltage	VGS=0V,IS=-1A		-0.8	-1.3	V
Ciss	Input Capacitance			1127		
Coss	Output Capacitance	VDS=-30V, VGS=0V, F=1MHZ		50		pF
Crss	Reverse Transfer Capacitance			35		
T _{D(ON)}	Turn-on delay time			6.0		
Tr	Rise time	VGS=-10V,		8.3		
T _{D(OFF)}	Turn-off delay time	VDS=-30V, RL=7.5Ω, RG=3Ω		70		ns
Tf	Fall time			32		
Q_{G}	Total Gate Charge			20		
Q _{GS}	Gate to Source Charge	VGS=-10V, VDS=-30V ID=-4A		2.7		nC
Q_GD	Gate to Drain Charge			2.8		
Trr	Diode Recovery Time	IF=-4A , di/dt=100A/us		23		ns
Qrr	Diode Recovery Charge	IF=-4A , di/dt=100A/us		13		nC




➤ Typical Characteristics(T_A=25°C unless otherwise noted)



Package Information

SYMBOL	MIN	NOM	MAX
A	-		1.35
A1	0	-	0.15
A2	1.0	1.1	1.2
Ъ	0.35	-	0.45
ь1	0.32	-	0.38
С	0.14	_	0.20
c1	0.14	0.15	0.16
D	2.82	2.92	3.02
E	2.60	2.80	3.00
E1	1.526	1.626	1.726
е	1.8	1.9	2.0
L	0.35	0.45	0.6
L1	0.6REF		
L2	0.25REF		
R	0.1		
R1	0.1	-	
θ	0°	4°	8°
0 1	5°	10°	15°

		b —	
WITH	PLĄTING		
			1
	1		
	C		c1
	•		_
			ı
	BASE	METAL	

NOTES: 1.All DIMENSIONS REFER TO JEDEC STANDARD

MO-178
2.DIMENSION D DOES NOT INCLUDE MOLD FLASH
3.DIMENSION E1 DOSE NOT INCLUDE MOLD FLASH
4.FLASH OR PROTRUSION SHALL NOT EXCEED
0.25mm PER SIDE.

SOT23-3L

Rev.1.1 www.sscsemi.com

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.