

SSC8205GSB

Common Drain N-Channel Enhancement Mode MOSFET

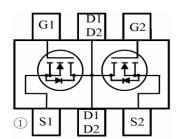
> Features

VDS	VGS	RDSON Typ.	ID
20V	1421/	18mR@4V5	6A
200	±12V	22mR@2V5	θA

Description

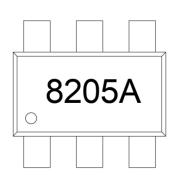
Advanced trench process technology. High density cell design for ultra-low on-resistance. High power and current handling capability. Fully characterized avalanche voltage and current.

Applications


- Li-ion battery protection
- Load switch
- DCDC conversion

Ordering Information

Device	Package	Shipping
SSC8205GSB	SOT23-6L	3000/Reel


Pin configuration

Top view

SOT23-6L

➤ **Absolute Maximum Ratings**(T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V_{DSS}	Drain-to-Source Voltage	20	V
V _{GSS}	Gate-to-Source Voltage	±12	V
I _D	Continuous Drain Current ^a	6	Α
I _{DM}	Pulsed Drain Current ^b	18	Α
P _D	Power Dissipation °	1.25	W
P _{DSM}	Power Dissipation ^a	0.7	W
TJ	Operation junction temperature	-55 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance ^a		190	°C /\
Rejc	Junction-to-Case Thermal Resistance		105	°C/W

Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

ightharpoonup **Electronics Characteristics**(T_A=25 $^{\circ}$ C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	20			V	
V _{GS} (th)	Gate Threshold Voltage	VDS=VGS,ID=250uA	0.5	0.65	1	٧	
-	Drain-Source On-	VGS=4.5V,ID=3A		18	21	mR	
R _{DS(on)}	Resistance	VGS=2.5V,ID=2A		22	25		
I _{DSS}	Zero Gate Voltage Drain Current	VDS=16V,VGS=0V			1	uA	
I _{GSS}	Gate-Source leak	VGS=±12V,VDS=0V			±100	nA	
G _{FS}	Transconductance	VDS=5V,ID=4.5A		10		S	
V _{SD}	Forward Voltage	VGS=0V,IS=1.25A		0.8	1.3	V	
Ciss	Input Capacitance			600			
Coss	Output Capacitance	\/D\$=0\/\\/\$\$=0\/\f=1MLI=		330		nE	
Crss	Reverse Transfer Capacitance	VDS=8V, VGS=0V, f=1MHz		140		pF	
T _{D(ON)}	Turn-on delay time			8			
Tr	Rise Time	VGEN=4.5V,		10			
T _{D(OFF)}	Turn-off delay time	VDS=10V, RG=6R,ID=1A		35		ns	
Tf	Fall Time			30			
Qg	Total Gate charge			10			
Qgs	Gate to Source charge	VGS=4.5V, VDS=10V, ID=6A		2.3		nC	
Qgd	Gate to Drain charge			2.9			

> Typical Characteristics(T_A=25°C unless otherwise noted)

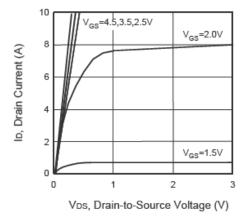


Figure 1. Output Characteristics

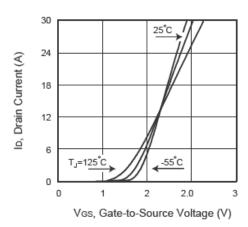


Figure 2. Transfer Characteristics

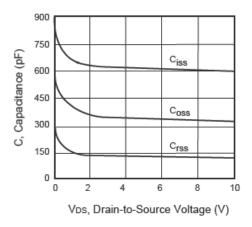


Figure 3. Capacitance

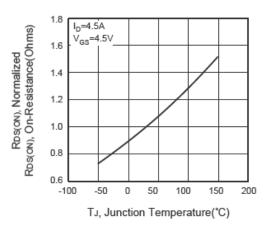


Figure 4. On-Resistance Variation with Temperature

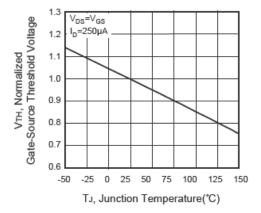


Figure 5. Gate Threshold Variation with Temperature

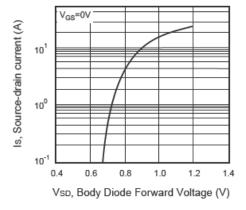


Figure 6. Body Diode Forward Voltage Variation with Source Current

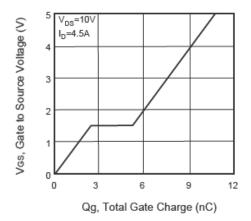


Figure 7. Gate Charge

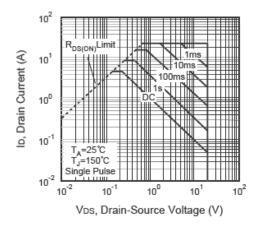


Figure 8. Maximum Safe Operating Area

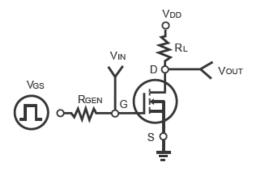


Figure 9. Switching Test Circuit

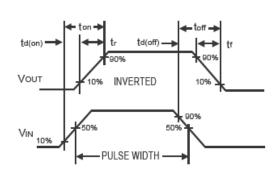


Figure 10. Switching Waveforms

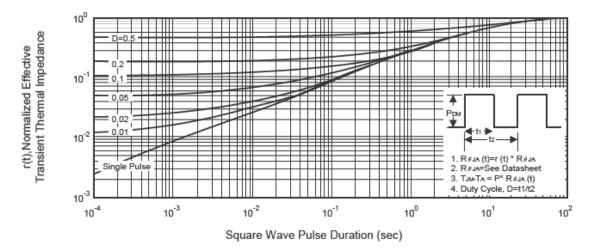
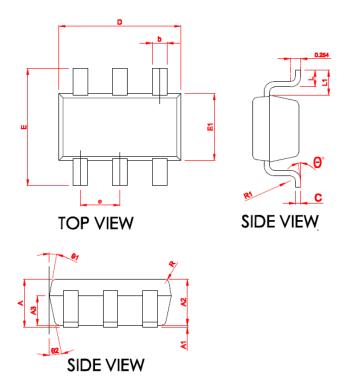



Figure 11. Normalized Thermal Transient Impedance Curve

> Package Information

OVALDO		IILLIMETE		
SYMBOL	MIN	NOM	MAX	
Α	1.06	1.15	1.24	
* A1	0.01	0.05	0.09	
* A2	1.05	1.10	1.15	
A3	0.65	0.70	0.75	
* b	0.30	0.35	0.45	
* C	0.117	0.127	0.157	
* D	2.87	2.92	2.97	
* E	2.72	2.80	2.88	
* E1	1.55	1.60	1.65	
* е	0.90	0.95	1.00	
* L	0.32	0.40	0.48	
* L1	0.55	0.60	0.65	
R	0.10 REF			
R1	0.12 REF			
* 0	0	-	8°	
0 1	8°	10°	12°	
θ2	10°	12°	14°	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.