

SSC8239GT8

P-Channel Enhanced MOSFET

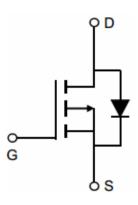
> Features

VDS	VGS	RDSON Typ.	ID
-30V	1201/	5.3mR@-10V	-94A
	±20V	6.8mR@-4.5V	

Description

This device is P-Channel enhancement MOSFET. Uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit.

Applications


- DC/DC converters
- Power supplies
- Motor Drive Control
- Synchronous rectification

> Ordering Information

Device	Package	Shipping
SSC8239GT8	TO-252	2500/Reel

Pin Configuration

Marking

(XX: Product Year/YY: Product Week)

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

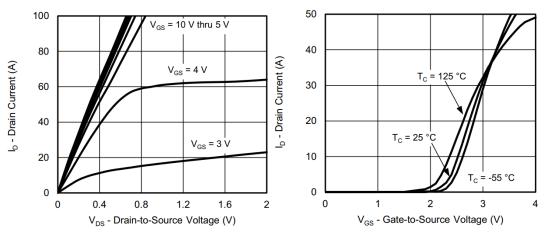
Symbol	Parameter	Ratings	Unit		
V _{DSS}	Drain-to-Source Voltage		-30	V	
V _{GSS}	Gate-to-Source Volt	tage	±20	V	
	Continuous Drain Current d $T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ TA=25 $^{\circ}C$ $T_{A}=70^{\circ}C$	-94			
l _D	Continuous Drain Current	Tc=100°C	-50	Α	
	0	T _A =25°C	-29		
IDSM	Continuous Drain Current a	T _A =70°C	-21	Α	
I _{DM}	Pulsed Drain Curre	Pulsed Drain Current ^b		Α	
Б	Daniel Biolinetics 2	Tc=25°C	83	307	
P _D	Power Dissipation ^c	Tc=100°C	33	W	
_	Daniel Biolinetics 2	T _A =25°C	8.3	307	
P _{DSM}	Power Dissipation ^a	T _A =70°C	5.3	W	
I _{AS}	Avalanche Current b L=0.5mH Single Pulse		30	Α	
Eas	Avalanche Energy b L=0.5mH Single Pulse		225	mJ	
TJ	Operation junction temperature		-55~150	0.0	
T _{STG}	Storage temperature	range	-55~150	°C	

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
R _{0JA}	Junction-to-Ambient Thermal Resistance ^a	15	°C/W
Rejc	Junction-to-Case Thermal Resistance	1.5	C/ W

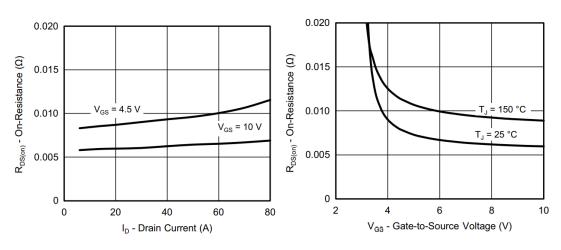
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

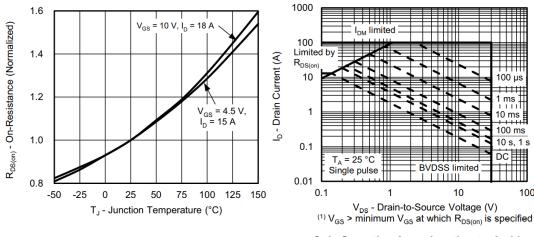


➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	VGS=0V, ID=-250uA	-30			V	
$V_{\text{GS }(th)}$	Gate Threshold Voltage	VDS=VGS, ID=-250uA	-1	-1.2	-2	V	
В	Drain-Source On-	VGS=-10V, ID=-20A		5.3	7	mR	
$R_{DS(on)}$	Resistance	VGS=-4.5V, ID=-15A		6.8	9.5	mK	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-24V, VGS=0V			-1	uA	
I _{GSS}	Gate-Source leak current	VGS=±20V, VDS=0V			±100	nA	
G _{FS}	Transconductance	VDS=-5V, ID=-5A		25		S	
V _{SD}	Forward Voltage	VGS=0V, IS=-10A		-0.77	-1.3	V	
Rg	Gate Resistance	VGS=0V, f=1MHz		3.5	4.5	R	
Ciss	Input Capacitance			4560			
Coss	Output Capacitance	VDS=-15V, VGS=0V,		530		pF	
Crss	Reverse Transfer Capacitance	f=1MHz		140		ρΓ	
$T_{D(ON)}$	Turn-on delay time			21			
Tr	Rise time	VGS=-10V, RL=1.5R		26			
T _{D(OFF)}	Turn-off delay time	VDS=-15V, RG=1R		35		ns	
Tf	Fall time			18			
Q _G	Total Gate Charge	V00 40V VD0 45V		74			
Qgs	Gate Source Charge	VGS=-10V, VDS=-15V		12		nC	
Q _{GD}	Gate Drain Charge	- ID=-20A		11			
Trr	Diode Recovery Time	IF=-20A, di/dt=100A/us		45		ns	
Qrr	Diode Recovery Charge	IF=-20A, di/dt=100A/us		20		nC	



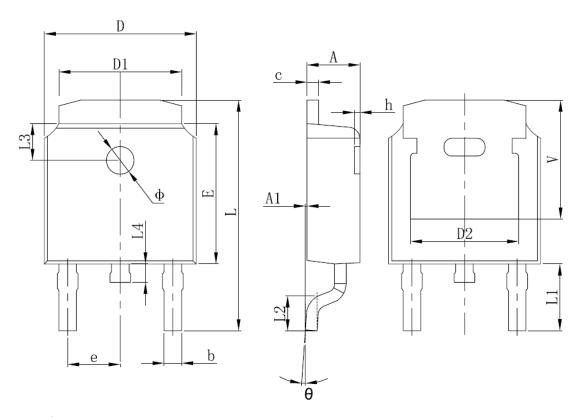
➤ Typical Characteristics(T_A=25°C unless otherwise noted)


Output Characteristics

Transfer Characteristics

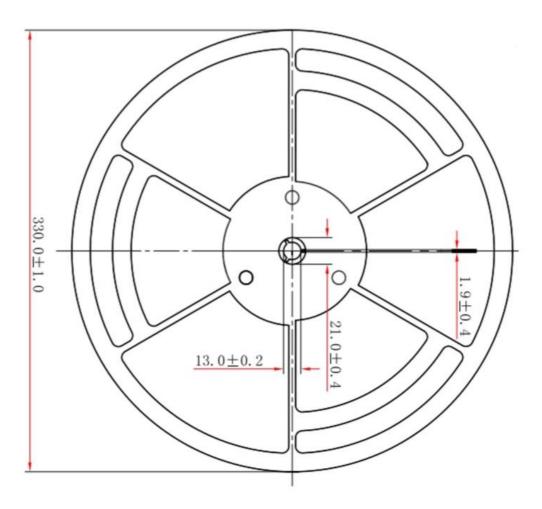
On-Resistance vs. Drain Current and Gate

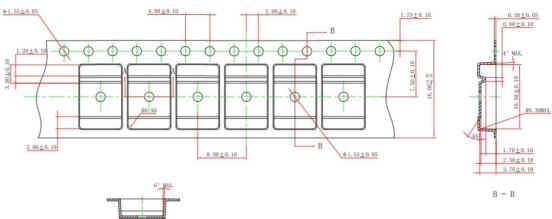
On-Resistance vs. Gate-to-Source Voltage



On-Resistance vs. Junction Temperature

Safe Operating Area, Junction-to-Ambient


> Package Information



Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
А	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.635	0.770	0.025	0.030
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830 REF.		0.190 REF.	
E	6.000	6.200	0.236	0.244
e	2.186	2.386	0.086	0.094
L	9.712	10.312	0.382	0.406
L1	2.900 REF.		0.114 REF.	
L2	1.400	1.700	0.055	0.067
L3	1.600 REF.		0.063 REF.	
L4	0.600	1.000	0.024	0.039
Ф	1.100	1.300	0.043	0.051
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.250	REF.	0.207 REF.	

Tape and Reel

6,90±0,10

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.