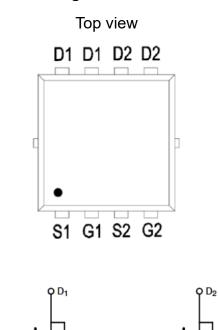


SSC8340GN4


Dual N-Channel Enhancement MOSFET

> Features

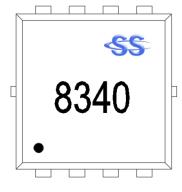
VDS	VGS	RDSON Typ.	ID
401/	1201/	21mR@10V	454
40V	±20V	25mR@4V5	15A

> Description

SSC8340GN4 uses advanced trench technology to provide excellent RDSON and low gate charge. The complementary MOSFETS may be used to form a level shifted high side switch, and for a host of other applications.

Pin configuration

 \geq



Applications

- Inverter
- DC-DC converter
- Half and Full Bridge Topology
- Wireless Charging

> Ordering Information

Device	Package	Shipping
SSC8340GN4	PDFN3.3X3.3	5000/Reel

Marking

> Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

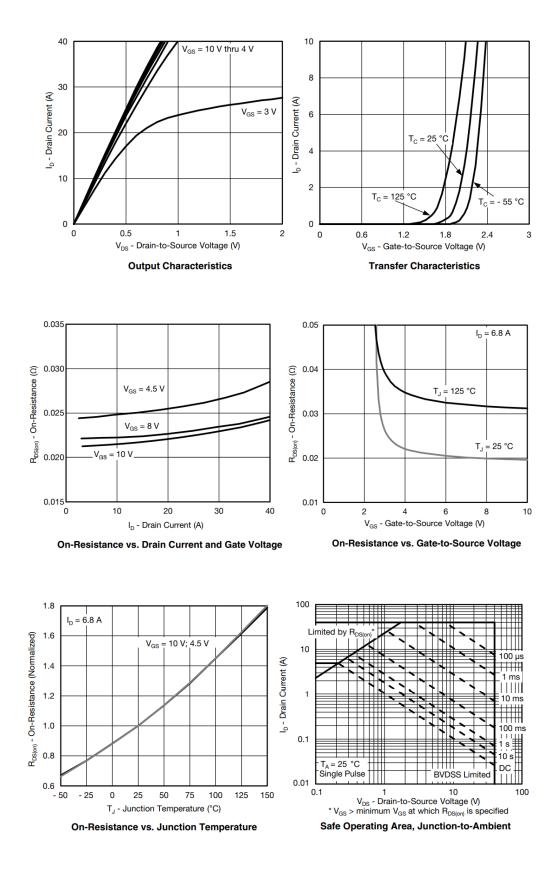
Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-to-Source Voltage		40	V
V _{GSS}	Gate-to-Source Voltage		±20	V
I-	Continuous Drain	TC=25℃	15	A
Ι _D	Current ^d	TC=100 ℃	10	А
I _{DM}	Pulsed Drain Current ^b		60	A
I _{AS}	Avalanche Current ^b L=0.1mH		23	A
E _{AS}	Avalanche Energy ^b L=0.1mH		26	mJ
I	Continuous Drain	TA=25℃	8	A
ID	Current ^a	TA=70 ℃	6.5	A
Р	Power Dissipation ^c	TC=25℃	10	W
P _D		TC=100℃	4.1	W
		TA=25℃	2.1	W
P _{DSM}	Power Dissipation ^a	TA=70 ℃	1.3	W
TJ	Operation junction temperature		-55 to 150	°C
T _{STG}	Storage temperature range		-55 to 150	°C

> Thermal Resistance Ratings ($T_A=25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Reja	Junction-to-Ambient Thermal Resistance ^a	60	°C AM
Rejc	Junction-to-Case Thermal Resistance	12	°C/W

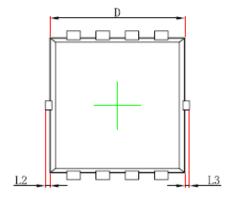
Note:

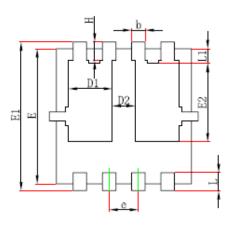
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A=25°C.The value in any given application depends on the user is specific board design. The current rating is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

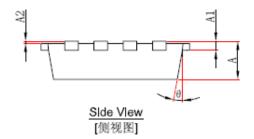


Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V , ID=250uA	40			V
$V_{GS\ (th)}$	Gate Threshold Voltage	VDS=VGS , ID=250uA	1	1.6	2	V
D	Drain-Source On-	VGS=10V , ID=10A		21	25	
$R_{DS(on)}$	Resistance	VGS=4.5V , ID=8A		25	30	- mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=32V, VGS=0V			1	uA
I _{GSS}	Gate-Source leak current	VGS=±20V , VDS=0V			±100	nA
G_{FS}	Transconductance	VDS=5V , ID=10A		11		S
V _{SD}	Forward Voltage	VGS=0V , IS=5A		0.8	1.3	V
Rg	Gate Resistance	VGS=0V, f=1MHZ		3		R
Ciss	Input Capacitance			815		
Coss	Output Capacitance	VDS=20V, VGS=0V,		151		
Crss	Reverse Transfer Capacitance	f=1MHZ		41		рF
Qg	Total Gate Charge			14		
Qgs	Gate Source Charge	VDS=20V, VGS=10V,		3		nC
Qgd	Gate Drain Charge	ID=10A		2		
T _{D(ON)}	Turn-on delay time			6		
Tr	Rise time	VDS=20V, VGS=10V,		10		
T _{D(OFF)}	Turn-off delay time	RL=3.7R, RG=1R		16		ns
Tf	Fall time			7		
Qrr	Diode Recovery Time	IF=5A , di/dt=100A/us		17		nC
Trr	Diode Recovery Charge	IF=5A , di/dt=100A/us		10		ns

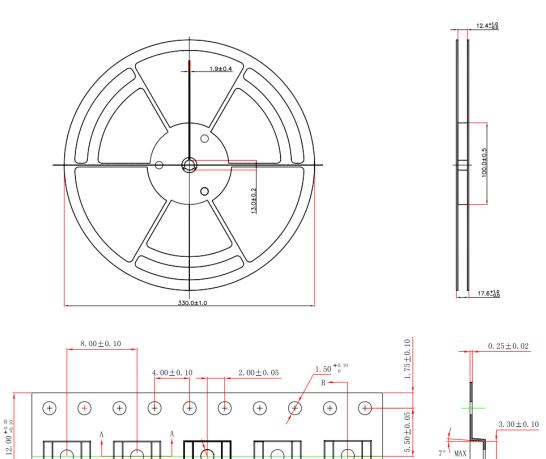



> **N-Channel Typical Characteristics**(T_A=25[°]C unless otherwise noted)


Package Information

<u>Top Vlew</u> [顶视图]

Symbol	Dimensions In Millimeters		Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
А	0.650	0.850	0.026	0.033		
A1	0.152	REF.	0.006	REF.		
A2	0~0	0.05	0~0.002			
D	2.900	3.100	0.114	0.122		
D1	0.935	1.135	0.037	0.045		
D2	0.280	0.480	0.011	0.019		
E	2.900	3.100	0.114	0.122		
E1	3.150	3.450	0.124	0.136		
E2	1.535	1.935	0.060	0.076		
b	0.200	0.400	0.008	0.016		
e	0.550	0.750	0.022	0.030		
L	0.300	0.500	0.012	0.020		
L1	0.180	0.480	0.007	0.019		
L2	0~0.100		0~0	0~0.004		
L3	0~0.100		0~0.004			
Н	0.315	0.515	0.012	0.020		
θ	9°	13°	9°	13°		



7° MAX

1.50±0.10

В-В

Tape and Reel Data \triangleright

(

3.20

5.20±0.10

A-A

1.20

8° MAX

1. $50_{-0}^{+0.25}$

В

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.