

SSCP5401GSG

PNP Switching Transistor

Features

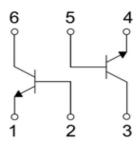
VCB	VCE	VEB	IC
-160V	-150V	-5V	-200mA

> Description

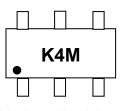
This device is designed for general-purpose high-voltage amplifiers and gas discharge display drivers. It is Ideal for medium power amplification and switching.

Applications

- General-purpose high-voltage amplifiers
- Gas discharge display drivers
- Medium power amplification and switching


Ordering Information

Device	Package	Shipping
SSCP5401GSG	SOT-363	3000/Reel


> Pin configuration

SOT-363

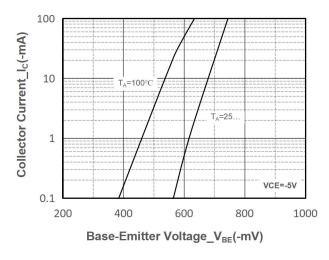
Circuit Diagram

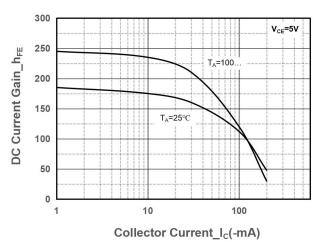
Marking(Top View)

SSCP5401GSG

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-160	V
Collector- Emitter Voltage	V _{CEO}	-150	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current-Continuous	Ic	-200	mA
Collector Power Dissipation	Pc	200	mW
Junction Temperature	TJ	-55 to 150	$^{\circ}$
Storage Temperature	T _{STG}	-55 to 150	$^{\circ}$


➤ Electrical Characteristics (T_A=25°C unless otherwise noted)


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	I _C =-100uA, I _E =0	-160			V
Collector-emitter Breakdown Voltage	BV _{CEO}	I _C =-1mA, I _B =0	-150			V
Emitter -Base Breakdown Voltage	BV _{EBO}	I _E =-100uA, I _C =0	-5			V
Collector Cutoff Current	I _{CBO}	V _{CB} =-120V, I _E =0			-50	nA
Emitter Cutoff Current	I _{EBO}	V _{EB} =-4V, I _C =0			-50	nA
	h _{FE1}	V _{CE} =-5V, I _C =-1mA	50			
DC Current Gain	h _{FE2}	V _{CE} =-5V, I _C =-10mA	100		300	
	h _{FE3}	V _{CE} =-5V, I _C =-50mA	50			
Collector Emitter Seturation Voltage	V _{CE} (sat)1	I _C =-10mA, I _B =-1mA			-0.2	V
Collector-Emitter Saturation Voltage	V _{CE (sat)2}	I _C =-50mA, I _B =-5mA			-0.3	V
Page Emitter Seturation Voltage	V _{BE} (sat)1 I _C =-10mA, I _B =-1mA	I _C =-10mA, I _B =-1mA			-1	V
Base-Emitter Saturation Voltage	V _{BE (sat)2}	I _C =-50mA, I _B =-5mA			-1	V
Output Conscitance	Cob	VCB=-10V, IE=0,			6	
Output Capacitance		f=1MHz		6		pF
Noise Figure	NF	VCE=-10V, IC=-200uA,			8.0	dB
Noise Figure	INF	f=1KHz, Rs=10Ω			0.0	
Transition frequency	f⊤	V _{CE} =-10V, I _C =-10mA	100			MHz
Transition nequency	IT IT	f=1MHz	100			IVII IZ

SSC-V1.0 <u>www.sscsemi.com</u> Analog Future

\succ Typical Performance Characteristics (T_A=25 $^{\circ}$ C unless otherwise noted)

Collector Current vs. Base-Emitter Voltage

Dase-Emitter Saturation

0.8

0.8

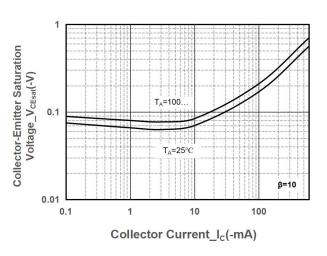
T_A=25°C

0.6

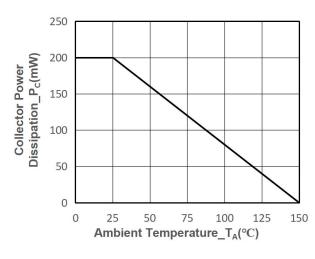
O.4

O.4

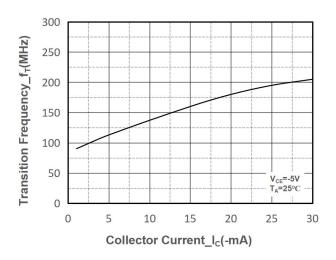
O.7


O.1

1

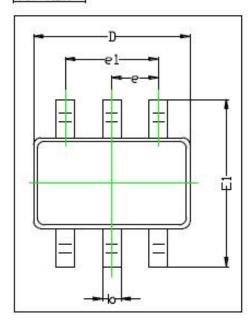

10

Collector Current_I_C(-mA)

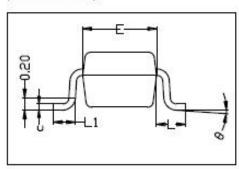

DC Current Gain vs. Collector Current

V_{BE(sat)} vs. Collector Current

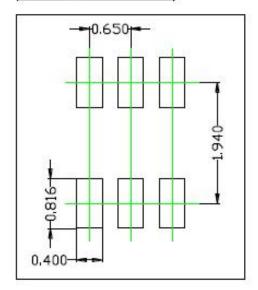
V_{CE(sat)} vs. Collector Current

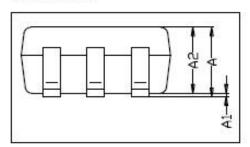

Power derating vs. Ambient temperature

Transition Frequency vs. Collector Current



Package Information


TOP VIEW


SIDE VIEW

SOLDRING PATTERN

FRONT VIEW

SYMBOL	DIMENSIONS IN MILLIMETER		
SIMBOL	MIN	MAX	
Α	0.900	1.000	
A1	0.000	0.100	
A2	0.900	1.000	
р	0.150	0.300	
С	0.100	0.150	
D	2.000	2.200	
E	1.150	1.350	
E1	2.150	2.400	
e	0.65	0 TYP.	
e1	1.200	1.400	
L L	0.525 REF.		
L1	0.260	0.450	
Ф	0.	8°	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.